CHANGES IN GROUND WATER LEVEL IN IRRIGATED
TERRAIN
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Periodic solutions of a second-order partial differential equation with the right-hand part nonlinearly
dependent on the unknown function, or the function incorporated in the boundary conditions, are discussed
in the literature [1-8]. The time t is an implicit variable in the expression of this nonlinear function.

Periodic variation of the level of ground water in irrigated terrain is treated as a problem of peri-
odic variation over a semi-infinife region [8] with attention given to evaporation, which is reduced to a lin-
ear integral equation whose solution is found in limiting cases.

The solution of the problem is found below in a semi-infinite region and in a finite region.

1. We shall assume that the ground waters occupy a region 0 <x<] between channels with respective
water levels Hy and Hy. At the point x=x° (0 <x°<]), the ground water level h is measured. When thatlevel
reaches a height h,, irrigation carried out at an intensity mc (where m is the porosity) ceases and then re-~
sumes, as h declines to the level h, (evaporation is taken into account in this treatment). The rate of
evaporation is md.

This problem reduces to one of finding the solution of the heat conduction equation with the right-
hand part dependent in a relay (on-off) pattern on the ground water level at the point x°, and with the bound-
ary conditions

R(0, ) =H,, h(l, t)=H, (1.1)
Assuming
h(z, t) =H, + (Hy, — Hy) zl-* + u (z, ¢) (1.2)
we now reduce the problem to one of finding the solution u(x,t) of the equation

du _ ,0%

S =t 4 F[u (2% )] (1.3)
where we introduce the notation

¢ for w(z%t)y<luy
Flu (‘ro7 )] = (u**<u*:c>07d>0) (1'4)
—d for  U(2° ) SUgy

with the conditions
u(©, )y =0, u(l, t)=0 (1.5)
Here we introduce the notation
ly = hy — Hy— (Hy — H) 1Y, gy = hoyy — Hy — (Hy — H) 211 (1.6)
We begin by considering this problem in a finite interval.

2. Now let u(x®, T)=u, when t=T,, andu(x’, T)=u,, when t=T. Then u(x, T)=u(x, 0), where T is
the period of the oscillations. When 0=t=T,, u(x, t)=w(x, t), and when T;=t=T u(x, t) =y, (x, t), and
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Uy g T the functions uy (x, t) and u, (x, t) satisfy the conditions
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F ;‘ T 4 oo : 'ﬂ'q';; ot ., ,,%‘ oz )
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) 13 w0, 8 ='uy (1, §) =0 (2.4)
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Fig. 1 respectively.

We shall seek the solution of Eq. (2.1) in the fo‘rn"'n_x‘of the series

Uy (2, 8) = D) fx () sm“—;‘f (2.5)
k=1

Substitution of Eq. (2.5) into Eq. (2.1) yields an expression for the functions fy (t) (k=1, 2, ...)

i (£) = Cy exp (— Ay?t) — af;f,ka [(—1)* — 1] (1 — exp (— My2t)) <M “ak) 2.6)

where Ci are unknown constants.
We now state the expressions for the functions u; (x, t) and u, (%, t)

uy (z,%) = 21 [Crexp (— An) — azzzgna [(— 1) — 1] (1 — exp (—A.%))] sin= mm: Ot T
= 2.7

g (2, ) = 3 {Dyexp [— At (1 — T)] + oy [(— " = A1 —exp [= A2 (= TID}sin T2 (1a<i<)
n=1
For brevity, we introduce the notation

2R [(— 1) —1
n = [(azusztﬂ 4 ’ Bn = exp (—A.2Ty) (2.8)

Tn=exp (=22 (T —T1)), 8, =exp(—A1,T)
Clearly, the equations
w@ O=u@E T), uylE@ T)=uE T, (2.9
must be satisfied.

In virtue of Egs. (2.7), (2.8), we derive from Egs. (2.9) some expressions for the constants Cp and Dy

c “n{—c(Tn—ﬁn)-l-d(i—Tn)} D. - mf—c(—Br)+dBrn— &) (2.10)
n= 1—0, n 1—95,

It is clear from Egs. (2.8) and (2.10) that the series (2.7) converge uniformly.
The values of Ty, T are found as the smallest roots of the equations u(x’, Ty)=u, and u(x’, T)=u,,

In virtue of Egs. (2.7) and (2.10),

S en ot =B+ d By ) STy, 2.11)
St O = ¢ (tn = Ba) -+ d (1 — )} ;7"
Elmn{ ¢(tn 1__)61- =1 T_u**

We now consider the case ¢=d, T=2T,;. Equations (2.10) and (2.11) become

- — g LB (2.12)
C'n.'—_'Dn— n1+B

o0
B,,, nnz®
—_ [0 sm————- Uy = —U
2 n 1+B * sk

n==1
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Now let x°=]/2. Then in the light of Eqs. (2.8), we find from Eq. (2.12)

42 ¢ 1—By,

Czk—lz—mmrm, Car =0

(2.13)
A% @ (— 1) =By,
e = Gm B T By (Bar—y = exp (— hyy_,*T1))

We now consider the function

B had (= 1)k+1 1— sz—l (T'1)
y(I) =2 @E—1P T4 B8,,, (1)

k=1

Clearly, y(0)=0, y'(T;)>0. As T, goes to infinity, y tends to the value [10]

Dl
&R 2

Hence, we arrive at the following result: a single root T;>0 of Eq. (2.13) exists when the inequality

a’u 1
Us= 120* < 3
is satisfied.

Consequently, a unique solution of the problem exists under those conditions. It is described by
Egs. (2.7), where Cyp and Dy are given by Egs. (2.12).

If ¢=d, T=2T, then Eq. (2.12) acquires the form

2. 4 - 1—?’ —1 . —_—
alz;: _ 4 1 k-1 ln(Zk

1) ma®
® A I TF By T

(2.14)

U, =

It can be readily seen, from Eq. (2.14), that U, (0)=0. With increasing 7;=42T;/[2, as the calcula-
tions show, U, increases, but as T; goes to infinity U, tends to

1 z° z°
V=5 (1-7)
Accordingly, even in that case a unique solution T; exists when U, < U,

In the general case, when the notation

a*u alu, a?T atT d
Us,= lz:~ U***: lﬁj*’ 71=‘lTv ‘Uz—l;, A=——c— (2.15)

is introduced, we obtain from Egs. (2.11) the following equations for the functions U, (T4, 7) and U,y (T4, T2

U, =

4 o - Bax_y — ABgp_y (1 — Top_y)] sin (2k — 1) fz®
W e R — 1P —Bop Taxa) l

561



_ 4 < [Tgk_]_ (1- B2k—l) —A (1 - Tgk 1)] . (Zk — 1) x
== 2 CE= TP —Bpatany) % ; (2.16)

(Byg_y = exp [—n2 2k —1)2T1], 7Ty, =0xp[— M2k — 1)? (v — T1)])

It is clear from Egs. (2.16) that, as 7y goes to infinity, U, tends to U, and U, tends to —AU,,.

At large values of k, the k~th term of the series (2.16) does not exceed the k-th ferm of the series

4(14+A
48 2 S (2.17)

The estimate of the residual term Rn(l) (i=1, 2) of the series U, and U,, used in the calculations
was derived from Eq. (2.17):

[R.®|<e, n>N, E(ﬁzi_) mom

where E (x) is the integral part of the number x.

Figure 1 displays graphs of the function U,, defined by Eq. (2.14), as a function of T4, for different
values of the ratio x°/[.

U, and U, are plotted vs 74 in Fig. 2 for the case A=0.5, 7=37;.

Curves 1-6 correspond to the respective ratios x°/[=0.08333, 0.91667; 0.16667, 0.83333; 0.25, 0.75;
0.33333, 0.66667; 0.41667, 0.58333; 0.5.

It is clear from the shape of the curves U, (1, bry), Uy, (74, bT;), similar to those plotted in Fig. 1
and Fig. 2, that each pair of values of U, and Uy, such that ~AU,<U, <U,, =AU, <U,, <U, corresponds
to a single pair of values of 7y, T

The shape of curves of constant values of U, (continuous curves) and of Uy (broken curves)is shown
in Fig. 3 in the 74, 7 plane. The direction of increasing U, and U,, is indicated by the arrows.

3. We consider the same problem in the semi-infinite region. The solution of the equation

‘2’: a? ‘9" i) 3.1

with the boundary condition u(0, t) =0 and without the initial conditions becomes [9]

t 00
vt = s § 0 Forn( o s

Using the formula [10]

§exp(_ 4a:(ffi)) sh w(ﬂf dg_.al/;'(??t—tb(
0

V=)

(CD (3) = VZTr S exp (— s%) ds ) (3.3)

we restate the solution (3.2) of Eq. (3.1) in the following manner:

2Vz

t

= — (3.4)

vt = {100 (A=)

We shall now assume that the function f (1) takes on the values
(3.5)

(k=0,41,42,..)

¢ for KT<t<kT+ T,
f(v)
—~d for KT +T,<<t<<(E+1)T
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Do Ly //j Substitution of Eq. (3.5) into Eq. (3.4) yields the solution u(x, 1) in the
2002 == form of a series, where we assume u(x, t)=u, (x, t) when 0=t=T,, and u(x, t)=
' Uy (x, t) when Ty=t=T:
0 t
nen ul(x,t):——cgfb( — = Ngr+ S (3.6)
'\Z_ ] 2a Vi—z/
-0.007 ! : T,
[ P uz(x,t)z——dgd)(za Vt_r)dm'#—cS(D( —- ) v+ S (a1 1)
/5 =] T1
=7 o kT ( ’ (k—1)§T+T1 ]
S(z,t) = —d O—2—\dr+4¢ O ———\dt
, . ED [ (k—l)SﬂT, 20 Vi—x 1:> DT <2a Vi—x )
A3 10 :
Uniform convergence of the series u (x, t) and w, (x, 1), if ¢T{=d(T~=T))
4 is inferred from the asymptotic representation of the probability integral & (z)
~hons \;\ at small values of z:
Fig. 4 @)= 1/*

and from Eqgs. (3.6).

We can show, on the basis of the asymptotic representation of the probability integral at small val-
ues of z, that the series du, (x, 1)/0t and 3y, (x, t)/9t converge uniformly and that, at all values of x°, the
inequalities

aul(az Oux (2°, 1) >O 8uz(x t)<0

hold, so that formulas (3.6) yield the solution of the unknown nonlinear problem. The constant T is found
from one of the equations

uy (2 Ty) = uy, w4y (2°7) = Uy 3.7

where u(x, t) and u,(x,t)are defined by Egs. (3.6). We readily see from Egs. (3.6) and (3.7) that in the
limit as T;—0, u,— 0 and u,, —0, and in the limit as T— », u, — «,and u,, —~.

At large values of n, the series terms are of the order of magnitude

a, = An~"t, b,~An~, A= 28T ( o = T

3Va \° %)

Figure 4 shows plots of u, /¢ and u, /c as functions of T, for the cases d/c=0.5 (curve 1 corre-
sponds to the value z°=0.0030, curve 2 to the value z°=0.0027) and d/c=1 (curve 3 corresponds to the val-
ue z°=0.0030, curve 4 to the value z°=0.0027).

It is obvious from those graphs that each value of u, >0 corresponds to a unique Ty; but u,, <0 is not
arbitrary, being determined from the second of Egs. (3.7).

4. Assuming a finite distance ] between the channels, we now find the solution of the problem dis-
cussed in Sec. 2, with the initial conditions as stated, i.e., we find the solution of the problem (1.3)-(1.5)
with the condition

uy (z, 0) = @, () 4.1

where the function ¢, (x) will be assumed to satisfy the Dirichlet conditions in the interval 0=x=], and we
shall show that under the restrictions imposed upon the funetion ¢;(x) and on the constants figuring in the
conditions of the problem, the solution of problem tends to the periodic solution found in section 2 as the
time t increases without bound.

It is readily seen that the solution of the problem in question, if one exists, can be cast in the form
of the series

oo

(@) = [A<1+1) exp {_ A2 (t — 2 T(J?)}

n=j

ot —eso <22 (1- 3 10)] Yz
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i i
( AT10Le Q104 76%, 1=0,1,2,3,...,TO =0 ) .2)
j=0 i=0

uf*™ (@, ) = 3 [BEP exp {22 (¢ — 3} 70 — 7)) (4.3)
n=1 j=0
- i
+dot, {1 — exp [~ ht (e — 3 70— 76| }] st
j=0
i i
( Z ONN SO RSN TP L, ;01,2,3, ., )
i=0 j=0

Here An(i) are the Fourier coefficients of the function ¢, (¢), Ti(i), and T(i)-Ti(i) are the roots of
the equations

1 i
ugi-)—l) (zo, Z % + T{i-ﬂ)) =u,, u(zi+1) (‘zo’ 2 76 + T(i.ﬂ)) =y (4.4)
i=d i=n

(u, and u,, are given by Egs. (2.15)~(2.16), which, in the light of Eqs. (4.2) and (4.3), are written as fol-
lows:

>\ B,®sin Mlxor =u,, ) A sinzml—zn =Uyy (=1,23..) (4.5)
n=1 n=1
while the functions Bn(i) and An(i”" D=1, 2,3, ...) are related by the equations
Bn(i) = — C0y (1 - Bn(i)) + Bn(i)An(i)a Agﬂ) = dan (1- - Tn(i)) ‘l' Tn(i)Bn(i) (4-6)

Brl® = exp [— A2T1®],  7,® = exp [— A2 (TP — T4D)))

It is also clear from Eqgs. (4.2) and (4.3) that, in the limit as t— o, ui(i+ 1) (x°, )= cU,

{0 (z°, ) > — dU,, (Um = E%ZT (1 ._flo—))
We shall assume, as in paragraph 2, that the inequalities = AU, <1, <CUe, =dUs< Uy, <cUc, i.e.,
—Ugp<(uy-u,, ) Ac+d =(h-h,  )/(c+d)<U,, are satisfied.

In order for the values of u, and u,, to be attainable at finite instants of time, it will be sufficient
that the inequalities

xQ
o . mnx’ 3
P @) <uy N BOSInTE=u,Su,,  (@(=123..)
n=1

< By or AT
2 AOsin T —uy, <u,  (=23..)
n=y )

be satisfied.

Assuming u,-u,, >(c+d pU, (where p is some constant), we obtain 0 <Bn(j) <1, 0 <'yn(j) <1(j=1,2,...).
Recalling that agh. =0 (k=1, 2, 3,...), we have
B = (B, 1. = ()™
and it is clear from Eqgs. (4.5), (4.6) that, when the values of i are sufficiently large, we can find the con~-
stants T,(1) and T()-T;{) in practice from the equations

B;‘i)sini[-lz- + B, (i)sin?ﬂl—ms =u,—cU,, 4 (")SinﬂTgﬁo + A, (i)sinﬁ
=l +dUe  BaP=—can+ B9, 4,0 =du, + 4,0) 4.7
We find equations for Bl(i) and 'yi(i) from Eqgs. (4.6) and (4.7)
B = B, - 4B [((FV) + B )], 1D = 1,0 4 By, [(B,) + (1,.9)°] (4.8)
Here Bi(o), y1(°), A, B are constants, and the sign of A and B coincides with the sign of sin 37x°/].
From the conditions 0 <31(°) <1,0 <'y1(°) <1, we have the inequalities:
G > — 1, G >y, M — Py <y Mr=uy— Uy o =uyy+dU,

. imx®
a; = —(c +d)aism—l—-)
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If either A<0, B<0O or 0<A<1, 0<B<l, ,81(°)+ 2A <1, yi(") +2B <1, and hence the inequalities
b <lay+ag Wy >—a;—ay py— <y + 20,

we can find 0<8,) <1 and 0<v,8) <1 from Egs. (4.7), and then 8,{i) and v,(i) form monotonic sequences
bounded above and below, so that 8; and y; have limits by the Weierstrass theorem. By substituting the
values of 8; and vy; into Egs. (4.7) and (4.8), we see that these formulas practically coincide in that case
with Egs. (2.11), (2.8) for the periodic solution of the problem.

Consequently, when the above inequalities are valid, the solution of problem (1.3)-(1.5) with the ini-
tial condition (4.1) tends to the periodic solution (2.7), (2.8), (2.10) as the time t increases without bound.
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